Direct ignition and S-curve transition by in situ nano-second pulsed discharge in methane/ oxygen/helium counterflow flame

نویسندگان

  • Wenting Sun
  • Sang Hee Won
  • Timothy Ombrello
  • Yiguang Ju
چکیده

A well-defined plasma assisted combustion system with novel in situ discharge in a counterflow diffusion flame was developed to study the direct coupling kinetic effect of non-equilibrium plasma on flame ignition and extinction. A uniform discharge was generated between the burner nozzles by placing porous metal electrodes at the nozzle exits. The ignition and extinction characteristics of CH4/O2/He diffusion flames were investigated by measuring excited OH* and OH PLIF, at constant strain rates and O2 mole fraction on the oxidizer side while changing the fuel mole fraction. It was found that ignition and extinction occurred with an abrupt change of OH* emission intensity at lower O2 mole fraction, indicating the existence of the conventional ignition-extinction S-curve. However, at a higher O2 mole fraction, it was found that the in situ discharge could significantly modify the characteristics of ignition and extinction and create a new monotonic and fully stretched ignition S-curve. The transition from the conventional S-curves to a new stretched ignition curve indicated clearly that the active species generated by the plasma could change the chemical kinetic pathways of fuel oxidation at low temperature, thus resulting in the transition of flame stabilization mechanism from extinction-controlled to ignition-controlled regimes. The temperature and OH radical distributions were measured experimentally by the Rayleigh scattering technique and PLIF technique, respectively, and were compared with modeling. The results showed that the local maximum temperature in the reaction zone, where the ignition occurred, could be as low as 900 K. The chemical kinetic model for the plasma–flame interaction has been developed based on the assumption of constant electric field strength in the bulk plasma region. The reaction pathways analysis further revealed that atomic oxygen generated by the discharge was critical to controlling the radical production and promoting the chain branching effect in the reaction zone for low temperature ignition enhancement. 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction

A non-equilibrium plasma assisted combustion system was developed by integrating a counterflow burner with a nano-second pulser to study the effects of atomic oxygen production on the extinction limits of methane diffusion flames at low pressure conditions. The production of atomic oxygen from the repetitive nano-second plasma discharge was measured by using two-photon absorption laser-induced ...

متن کامل

Plasma-assisted combustion*

This paper presents an overview of experimental and numerical investigations of the nonequilibrium cold plasma generated under high overvoltage and further usage of this plasma for plasma-assisted combustion. Here, two different types of the discharge are considered: a streamer under high pressure and the so-called fast ionization wave (FIW) at low pressure. The comprehensive experimental inves...

متن کامل

Evaluation of the pulsed discharge helium ionization detector for the analysis of hydrogen and methane in breath.

Under the appropriate separation conditions the pulsed discharge helium ionization detector (PDHID) was used to detect hydrogen and methane separated from the matrix components of human breath samples. The sensitivity of this method is over an order of magnitude better than published methods using a flame ionization detector (FID) and a thermal conductivity detector (TCD), and has the further a...

متن کامل

Propagation of Edge Flames in Counterflow Mixing Layers: Experiments and Theory

Edge flames were investigated in a methane/O2/N2 counterflow diffusion flame burner. In a typical experiment, a stable counterflow diffusion flame in an axysymmetric configuration was perturbed by lowering the relevant Damköhler number slightly below the extinction value, Daext. As a result, the flame extinguished in the vicinity of the burner axis where conditions were uniform. An edge flame e...

متن کامل

Numerical Investigation of Forced Ignition in Laminar Counterflow Non- Premixed Methane-air Flames

Simulations of forced ignition of non-premixed laminar counterflow flames are used to study the effect of strain rate on ignition success. A one dimensional calculation is performed, using detailed methane chemical kinetics and treating the spark as an instantaneous heat release in an inert mixing layer. Ignition success depends on the mixture composition at the spark location, resulting in lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015